
Lecture 1: August 26

Overview. The title of the course is “Introduction to Hodge Modules”. Hodge
modules, invented by Morihiko Saito in the late 1980s, provide a convenient for-
malism for doing Hodge theory for arbitrary projective morphisms. But the theory
is somewhat complicated, and one needs some background in D-module theory in
order to understand it. For that reason, we are going to focus mostly on the things
that go into Saito’s theory, namely the theory of variations of Hodge structure
(VHS). Hodge modules themselves will only appear towards the end of the semes-
ter. By analogy, think of an introduction to schemes that is mostly a course in
commutative algebra. Since we are only going to work with VHS and Hodge mod-
ules over curves, you will not need to know anything about D-modules in order to
follow this course.

Here is the rough plan for the semester. After a brief review of Hodge structures
and polarizations, we will start looking at variations of Hodge structure over curves.
One source of examples is families of smooth projective varieties (or compact Kähler
manifolds) over curves, but it turns out to be more convenient to study abstract
VHS. We are going to discuss both the local theory (near a puncture, in case the base
curve is not compact) and the global theory. The local results are due to Wilfried
Schmid (in the 1970s), who gave a very precise asymptotic description of how a
VHS behaves near a puncture. We will see several applications of the local theory,
for example the local invariant cycle theorem, the so-called Clemens-Schmid exact
sequence (which relates Schmid’s results to the cohomology of singular fibers in a
family), and the famous theorem of Eduardo Cattani, Pierre Deligne, and Aroldo
Kaplan about the locus of Hodge classes. The global results are semisimplicity of
the monodromy representation (due to Deligne) and Steven Zucker’s theorem that
the cohomology groups of a VHS are themselves Hodge structures. Towards the
end of the semester, we will use these results to define Hodge modules over curves,
and I will explain how to translate the results of Schmid and Zucker into theorems
about Hodge modules.

The website for the course,

http://www.math.stonybrook.edu/~cschnell/mat690,

contains a list of references, to be updated over the course of the semester.

Hodge structures and polarizations. Let me start by recalling the definition
of a (complex) Hodge structure. Suppose that H is a finite-dimensional complex
vector space.

Definition 1.1. A Hodge structure of weight k on H is a decomposition

H =
⊕

p+q=k

Hp,q

into subspaces Hp,q ⊆ H.

For example, if X is a compact Kähler manifold, then the k-th singular cohomol-
ogy group Hk(X,C) has a Hodge structure of weight k. Note that the weight of a
Hodge structure is not determined by the decomposition itself: for example, one can
turn a Hodge structure of weight k into one of weight 0 by defining Hp,−p = Hp,k−p.

Definition 1.2. Let H be a Hodge structure of weight k. A polarization of H is a
hermitian pairing h : H ⊗C H → C with the following two properties:

(a) The Hodge decomposition is orthogonal with respect to h.
(b) The hermitian pairing (−1)ph is positive definite on Hp,q.
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The word “hermitian” means that h(λx, y) = λh(x, y) and h(y, x) = h(x, y) for
x, y ∈ H and λ ∈ C. We are going to look at the example of compact Kähler
manifolds in a moment, to see where the factor (−1)p comes from. But let me first
answer an obvious question.

Example 1.3. The usual definition of a Hodge structure, which you have surely seen
before, contains some extra assumptions. Let HQ be a finite-dimensional Q-vector
space. Then a Q-Hodge structure of weight k on HQ is a decomposition

HQ ⊗Q C =
⊕

p+q=k

Hp,q

with the property thatHp,q = Hq,p. Here complex conjugation is defined as x⊗ λ =
x ⊗ λ̄ for x ∈ HQ and λ ∈ C. This definition is motivated by the example of
cohomology, where Hk(X,C) = Hk(X,Q)⊗QC. But I prefer to work with arbitrary
(complex) Hodge structures, and I hope to convince you over the course of the
semester that this clarifies many things.

Example 1.4. For Q-Hodge structures, the usual definition of a polarization also
looks different. Suppose that HQ has a Q-Hodge structure of weight k. Then a
polarization is usually defined to be a bilinear pairing

S : HQ ⊗Q HQ → Q
with the following three properties:

(a) S is (−1)k-symmetric, meaning that S(y, x) = (−1)kS(x, y).
(b) The Hodge decomposition is orthogonal with respect to S.
(c) For x ∈ Hp,q, one has S(ip−qx, x̄) ≥ 0, with equality only for x = 0.

You should convince yourself that if we set H = HQ ⊗Q C, then

h : H ⊗C H → C, h(x, y) = (2πi)−kS(x, ȳ),

is a polarization of H in the sense of Definition 1.2.

Morphisms of Hodge structures are defined in the obvious way. If H1 and H2 are
two Hodge structures of weight k, then a morphism of Hodge structures is a linear
mapping f : H1 → H2 with the property that f(Hp,q

1 ) ⊆ Hp,q
2 whenever p+ q = k.

One can show that Hodge structures of a given weight form an abelian category.
There are many other exercises to be done here: the tensor product of two Hodge
structures of weight k and ` is a Hodge structure of weight k+ `; the dual of Hodge
structure of weight k is a Hodge structure of weight −k; and so on.

Example 1.5. Let H be a Hodge structure of weight k, and n ∈ Z an integer. We
can get a new Hodge structure of weight k − 2n on H, denoted H(n), by setting

H(n)p,q = Hp+n,q+n.

This operation is called the n-th Tate twist.

Compact Kähler manifolds. Now let us discuss the example of compact Kähler
manifolds in more detail. Suppose that X is a compact Kähler manifold of dimen-
sion n, with Kähler form ω. Recall that ω is a closed (1, 1)-form that contains the
same information as the Kähler metric h: in local coordinates z1, . . . , zn, the metric
is represented by an n× n-matrix with entries the smooth functions

hj,k = h

(
∂

∂zj
,
∂

∂zk

)
,

and the Kähler form is given by the formula

ω =
i

2

n∑

j,k=1

hj,kdz j ∧ dz̄k.
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Classical Hodge theory gives us the following four results:

(1) The k-th cohomology group Hk(X,Q) has a Q-Hodge structure of weight
k, given by

Hk(X,C) =
⊕

p+q=k

Hp,q(X).

Here Hp,q(X) contains all those cohomology classes that are representable
by a closed form of type (p, q). The proof of this fact is based on the theory
of harmonic forms. The hermitian metric h gives rise to an inner product
on the space Ak(X,C) of all smooth k-forms, and a closed form is called
harmonic if its norm is minimal among all forms in the same cohomology
class. One then proves, using analysis, that every cohomology class contains
a unique harmonic representative. The Kähler condition ensures that if we
decompose a harmonic form α ∈ Ak(X,C) according to type as

α =
∑

p+q=k

αp,q,

with αp,q ∈ Ap,q(X), then each αp,q is again harmonic. This implies the
desired decomposition of Hk(X,C). Since the conjugate of a (p, q)-form is

a (q, p)-form, we get the Hodge symmetry Hp,q(X) = Hq,p(X).
(2) The Hodge decomposition has another interpretation, observed by Deligne.

Recall that, by the holomorphic Poincaré lemma, one has a resolution

0→ C→ OX → Ω1
X → · · · → ΩnX → 0

of the constant sheaf, and therefore a convergent spectral sequence

Ep,q1 = Hq(X,ΩpX) =⇒ Hp+q(X,C).

On compact Kähler manifolds, this so-called Hodge-de Rham spectral se-
quence degenerates at E1. The reason is that Hp,q(X) ∼= Hq(X,ΩpX), and
because of the the Hodge decomposition,

∑

p+q=k

dimEp,q1 = dimHk(X,C) =
∑

p+q=k

dimEp,q∞ .

Therefore, Ep,q1 = Ep,q∞ , and so the spectral sequence degenerates at E1.
(3) There are some additional symmetries among the different cohomology

groups. The Lefschetz operator

L : Ak(X,C)→ Ak+2(X,C), L(α) = ω ∧ α,
takes closed forms to closed forms (because dω = 0), and therefore induces
a morphism on cohomology. The Hard Lefschetz theorem says that

Lk : Hn−k(X,C)→ Hn+k(X,C)

is an isomorphism for every k ≥ 1. In fact, one can be a bit more pre-
cise. Since ω is a (1, 1)-form, the Lefschetz operator maps Hp,q(X) into
Hp+1,q+1(X); it is therefore not a morphism of Hodge structures, but after
adding a Tate twist,

L : Hk(X,C)→ Hk+2(X,C)(1)

is a morphism of Hodge structures of weight k. With this observation, the
Hard Lefschetz theorem actually says that

Lk : Hn−k(X,C)→ Hn+k(X,C)(k)

is an isomorphism of Hodge structures of weight n− k, for every k ≥ 1.
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(4) Finally, we come to the topic of polarizations. For every k ≥ 0, one has the
so-called primitive subspace

Hn−k
0 (X,C) = ker

(
Lk+1 : Hn−k(X,C)→ Hn+k+2(X,C)(k + 1)

)
;

it is again a Hodge structure of weight n− k (as the kernel of a morphism
of Hodge structures). The so-called Hodge-Riemann bilinear relations say
that the bilinear pairing

(α, β) 7→ (−1)(n−k)(n−k−1)/2

∫

X

α ∧ β ∧ ωk

is a polarization of the Q-Hodge structure on Hn−k
0 (X,Q). (Although,

technically, it takes values in R, unless the cohomology class of ω belongs
to H2(X,Q), which only happens when X is projective.)

Example 1.6. For example, when X is a surface, this says that the intersection pair-
ing is negative-definite on the part of the Néron-Severi group that is perpendicular
to the class of ω.

Let me go through the proof of the fourth property, to show you that the po-
larization comes directly from the hermitian metric on X. The metric induces an
inner product on Ak(X,C), which can be written in the form

h(α, β) =

∫

X

α ∧ ∗β̄,

where ∗ : Ak(X,C)→ A2n−k(X,C) is the so-called Hodge ∗-operator. This operator
is defined pointwise, and has a simple expression in terms of an orthonormal basis
in the cotangent space at any point. If α ∈ Ap,q(X), then ∗α ∈ An−q,n−p(X).
Define the adjoint

Λ: Ak(X,C)→ Ak−2(X,C)

of the Lefschetz operator by the rule that h(Λα, β) = h(α,Lβ) for every α ∈
Ak(X,C) and every β ∈ Ak−2(X,C).

Definition 1.7. A k-form α ∈ Ak(X,C) is called primitive if Λα = 0.

One can show that nonzero primitive forms only exist for k ≤ n. Now a crucial
fact is that one can describe the effect of the ∗-operator on primitive forms: if
α ∈ Ap,q(X) satisfies Λα = 0, then one has

(1.8) ∗ α = iq−pε(k)
Ln−k

(n− k)!
α,

where k = p + q and ε(k) = (−1)k(k−1)/2. This fact is known as Weil’s identity.
The proof is tricky, but not deep; unlike other results in Hodge theory, no analysis
is required. In fact, Weil’s identity is a pointwise statement, which holds for in the
wedge algebra of any complex vector space with a hermitian inner product.

Now let us use Weil’s identity to derive the formula for the polarization. Let
α ∈ Ap,q(X) be the harmonic representative of a primitive cohomology class in

Hn−k
0 (X,C). One can show that Λα = 0, and so α is also primitive in the above

sense. Since p+ q = n− k, Weil’s identity gives

∗ᾱ = ip−qε(n− k)
Lk

k!
ᾱ.

If we put this into the formula for the inner product, we get

k! · h(α, α) = ip−qε(n− k)

∫

X

α ∧ ᾱ ∧ ωk,

and so the expression on the right-hand side is positive definite, as required.
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In summary, the existence of the Hodge decomposition is a deep result, based
on hard analysis, whereas the polarization comes basically for free, from the Kähler
metric. For that reason, people often talk about Hodge structures without mention-
ing the polarization; but as we will see throughout the semester, a Hodge structure
by itself is of very little use, and all the interesting results are actually coming from
the polarization.

Representation theory. So far, we only have a polarization on the primitive part
of the cohomology. There is a nice way to construct a polarization on the entire
cohomology of X, with the help of some basic representation theory. The starting
point is the following result, which is again fairly elementary: the commutator

[L,Λ] = LΛ− ΛL : Ak(X,C)→ Ak(X,C)

is simply multiplication by the integer k − n. So if we define a new operator

H : Ak(X,C)→ Ak(X,C), H(α) = (k − n)α,

we get the three relations

[L,Λ] = H, [H,L] = 2L, [H,Λ] = −2Λ.

Jean-Pierre Serre observed that these are exactly the relations among the three
standard generators of the Lie algebra sl2(C), and so the cohomology ring H∗(X,C)
becomes a representation of sl2(C).

More precisely, recall that sl2(C) is the Lie algebra of complex 2 × 2-matrices
with trace zero. It is 3-dimensional, with basis the three matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

It is easy to see that

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y,

which are exactly the same as the relations among H, L, and Λ.
Let us quickly review the finite-dimensional representation theory of sl2(C), since

it turns out to be extremely useful for Hodge theory. Recall that a representation
of sl2(C) on a finite-dimensional complex vector space V is a linear mapping

ρ : sl2(C)→ EndC(V )

that is compatible with taking commutators; the representation is of course de-
termined by knowing ρ(H), ρ(X), and ρ(Y ). The first fact is that every finite-
dimensional representation of sl2(C) is a direct sum of irreducible representations.
The reason is that sl2(C) is the complexification of the real Lie algebra su2, and
that every finite-dimensional representation of sl2(C) lifts to a representation of the
Lie group SU2. Since SU2 is compact, one can then average over the group to ob-
tain an invariant inner product, which can be used to decompose V into irreducible
representations.
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